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Localized fermions on quantized vortices in 
superfluid 3He-B 

G E Volovik 
L D Landau Insritute for Theoretical Physics. USSR Academyof Sciences, 
117334 Moscow. USSR 

Received 5 September 1989 

Abstract. The quantized vortex in a superfluid or superconducting Fermi system my contain 
gapless fermionic excitations localized in the vortex core. The number of branches of the 
gapless excitations-termionic zero modes-depends on the core structure and may change 
from 0 to sF/A 9 1. We investigated the possibility of the existence of the fermionic zero 
modes localized in the cores of axisymmetnc v vortices in superfluid 'He.B. The zero modes 
exist i t  the core radius exceeds the coherence length. 

1. Introduction 

In Fermi superfluids and superconductors there are low-energy fermionic excitations 
localized in the cores of quantized vortices [I] .  In conventional s wave superconductors 
the excitations localized near the vortex axis, where the phase of the order parameter 
hassingularityand themodulusoftheorder parameter tends tozero, haveasmallenergy 
gap of about A2/++ A compared with the gap A of the delocalized excitation far 
from the vortex. Asaresult they play adecisive rolein the kineticsand thermodynamics 
of the superconductor at low temperatures (see [2] for a review). Recently the density 
of the quasiparticle states in the vortex core has become an object of experimental 
investigations in scanning tunnelling microscopy experiments [3]. 

In modern relativistic field theories the vortices (strings) with the localized fermions 
are also discussed (see, e.g., [4,5]). It is important that as distinct from the Abrikosov 
vortices in conventional superconductors. in the majority of the models for strings, one 
or more branches of fermions are the so-called fermionic zero modes, which means that 
they are gapless. As a rule the number of gapless fermions is related to the topological 
charge of the vortex (its winding number). 

Since at a sufficiently low temperature T 4  A2/+ the existence or absence of the gap 
in the localized fermion spectrum leads to essentially different behaviour, it  is necessary 
to understand what are the conditions for the appearance of zero modes in the vortices 
in superconductors and superfluids. 

As was shown in [6], the necessary condition for fermionic zero modes in condensed- 
matter vortices is the dissolving of the singularity on the vortex axis, i.e. the flaring out 
of the singularity from the vortex axis into extra dimensions, i.e. into momentum space. 
Such a phenomenon takes place for the quantized vortices in the superfluid "e-B; the 
vortex with the singularity on the axis (0  vortex) is unstable towards the formation of 
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the v vortex with broken space panty which has no singularity on the vortex axis (see [7] 
for a review of quantized vortices in .IHe). Therefore the order parameter is nowhere 
zero. This is not an exclusion; the doubly quantized Abrikosov vortex in a conventional 
superconductor also has no singularity on the axis [8] and one may expect instability of 
the singularity in singly quantized vortices in the superconductors with a complicated 
structure of the gap function~in momentum space, such as heavy fermionic [9] and high- 
T, superconductors. 

There are three levels of description of the quasiparticle'spectrum in the quantized 
vortex. We are interested in the exact quantum mechanical spectrum €,(e, k,)  which 
dependson two quantum numbers: the momentum k,alongthevortexand thc azimuthal 
quantum number Q. Zero modes are those branches of this spectrum which cross the 
zero energy level at some k,. Sometimes the information on the existence of zero modes 
may be extracted from the behaviour of the classical energy spectrum E(k ,  r )  which 
depends both on the ~~~ momentum ~~ and on the position r inside the vortex core. In the 
simplest case this is the conventional equation q z Z ( k )  + IA(k, r)l', where the gap 
function A(k, r )  reflects the structure of the order parameter in  the vortex core. Some- 
times to investigate the zero modes it is necessary to know the behaviour of the spectrum 
of the intermediate level between classical and quantum levels; this is the semiclassical 
spectrum E((?. k;, k,, r )  with quantized azimuthal motion but with the classical 
description of the radial motion. 

The main difference between the singular and non-singular quantized vortices is in 
the behaviour of the classical spectrum of the fermionic excitations E(k ,  r) .  I n  the 
singular vortex thc excitation energy E(k,  r) drops to zero on the vortex axis ( r  = 0), 
wherethegapfunctioniszero,ontlirwholeFermisurface(lkl = k,).Inthenon-singular 
vortex with the gap function being non-zero on the vortex axis this two-dimensional 
surface of zeros is reoriented in the extended ( k ,  +space in the following manner: for 
each point r inside the  definite radius R (inner core radius) the energy drops to zero at 
several points k = k4(r) in momentum space. These are exclusive (so-called diabolical) 
points of the semiclassical spectrum, which are stable towards perturbation owing to 
conservation of their topological charge [lo]. They are also known as 'boojums on the 
Fermi surface' (see [ll]). 

It  appears that the number of the gapless fermionic modes €,,(e, k , )  on the vortices 
in the systems with Cooper pairing depends not on the winding number of the vortex 
but on the spatial distribution k"(r), of zeros in the classical spectrum E(k ,  r ) ,  of the 
fermions in the vortex core. The number of fermionic zero modes may vary from zero 
to +/A S 1 for the same winding number of the vortex. For the so-called w vortex in 
supertluid 'He-A the existenceof the fermionic zero modes was found [6] just from the 
distribution kD(r)of classical zeros in spectrum. The number of zero modes proved to be 
of the order of kFR S 1 where R is the size of the non-singular core of this vortex. This 
is the result of the specific broken symmetry in the core of thew vortex which provides 
a non-zero spectral asymmetry index already in classical limit. This index gives rise to a 
large number of gaplcss branches of the quasiparticle spectrum E,(Q, k,) and leads to 
spontaneous mass supcrflow along the vortex axis even at T = 0. 

Here we consider the axisymmetric vortices in another superfluid phase of jHe. 
These vortices belong to the v type of symmetry which does not support the relevant 
topological index of spectral asymmetry on the classical level and thereforc one needs 
to establish the existence of zero modes in this vortex in more detailed investigations on 
the intermediate semiclassical level (€(e, k,, k,, 7 ) ) .  Wc found from the topological 
arguments that zero modes exist at least in the limit of the large core radiusR S E .  These 
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arguments are illustrated on the simple model of the core structure of the axisymmetric 
v vortex with the A phase in the core. Our results suggest the existence of zero modes 
in real v vortices in 3He-B where R = (5-10)E. 

2. Hamiltonian for fermions in the 3He-B vortex 

The exact quantum mechanical spectrum of the fermions on the vortices i s  given by the 
eigenvalues of the Bogoliubov-Nambu Hamiltonian, describing the fermionic exci- 
tations: . _  

~. . A b .  r),y(r) = ~ , y ( r )  

wherep = (l/i)(a/&) for the quantum problem, with E @ )  = (pz - k:) /2m (where k ,  
denotes the Fermi momentum). 

The gap parameter A@, r )  is a symmetric 2 X 2 spin matrix for spin-triplet pairing 
and may be expressed in terms of the vector d 

A q 5 4 P > ' ) = ( g 4 , p . d b . r )  (2.2) 
where the U abbreviate the Pauli spin matrices, and 

g = (' = -iu, 

is the metric spinor. 

of the order-parameter matrix A., as follows: 
For L = 1 pairing, d i s  linear in the momentump, and it may be expressed in terms 

dw@, r)  = i[A,(r)P;/kF -t P ; / ~ F ]  A&) (2.3) 
In the axisymmetric vortex with m quanta of circulation the order parameter field is 

expressedin termsofnine radial functions C,,"(r) (see review in[7]), which are amplitudes 
ofthecooperpairing with thespinprojectionp = +1,0, - 1  on thevortexaxisandwith 
the orbital momentum projection v = + l ,  0, -1 on the same axis: 

A F t c x ( r )  = AB ~A;A:C,,(r) exp[i(m - p - v ) ~ ] .  (2.1) 
P" 

Forthemostsymmetricovortex,onlyfive real C,v(r)arenon-zero, withevenp + U. 
In the v vortex which is stable at high pressures, all nine real components are non-zero 
while, for the w vortex, five components of the o vortex are real and the other four 
components are imaginary. 

The fermionic excitations of the inhomogeneous vacuum of the vortex are described 
by the quantum numbers corresponding to the symmetry of the vacuum state. One of 
the quantum numbers is the projection k, of the quasiparticle momentum on the vortex 
axis. For the m-quantum axisymmetric vortex there is another continuous symmetry 
[7] which is the modification of conventional cylindrical symmetry described by the 
generator . .  

(2.5) 
It differs from the generator of rotations about the axis of the cylindrical symmetry by 

Q = t, + S, - mi. 
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the generator of the gauge transformation which transforms the order parameter in the 
following way: 

(2.6) e x p ( i i ~ )  A,, = exp(i@) A , .  

It is easy to check that for the vortex state in equation (2.4) 
QA"IeX = 

L1, 0 
Therefore the Fermiexcitationsas well asthe bosoniccollective modesoftheoscillations 
of the order parameter in the vortex are described in addition to continuous quantum 
numberk,bythequantum numberQ. Thegenerator~forthefermionsistheBogoliubov 
isospin ?r3 (the T are the Pauli matrices for the Bogoliubouisospin), i.e. t for particle 
and -t for the holes; therefore Q is an integer for the vortices with odd quanta of 
circulation m and is a half-integer for even m ,  just opposite to the case of the vortices in 
conventional s-wave superconductor with the spin-singlet pairing where Q = i, - mi. 

The wavefunction of the Bogoliubov fermion with quantum numbers k2 and Q is as 
follows: 

(2 .7)  

where 

-a (y - Q)] 

(2.9) 

a(/) = $[-(a,)z - ( l / r ) d ,  + l Z / r Z  + k: - k:] (2.10a) 

b,(4k,)/AB = -(i/z)[(CK* + c,-)a, + a,(c,+ + Cp- ) l  
+ i{[(l - h)/r]Cp+ - [( l  + !t)/r]CK-} + d C K 0 k , .  (2.106) 

TheHamiltonian(2.9)for theexcitationsinthecoreofthevvortex hasthe following 
elements of symmetry: 

(2.11a) 

(2.11 b )  
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F?(-Q, - k x )  = - T I P ( Q , ~ ~ ) T , .  (2.11c) 

The last one corresponds to the general ‘CPTtheorem’ for the Bogoliubov excitations 
inthe axisymmetricvortex. Thesecondone resultsfrom the additionaldiscrete symmetry 
of the vortex; here this is the so-called v symmetry of the v vortex [7], which is the 
combined symmetry PTU,: the symmetry under simultaneous space inversion P, time 
inversion r a n d  rotation U, by z about the axis which is perpendicular to the vortex axis 
(PTU, k ,  = - k z ,  PTU, Q = Q).  Equation (2.11a) is the combination of others. Since 
CPTE(Q,  k,)= -E(-Q,  - k , ) a n d P T U , E ( Q , k , )  = E(Q, -kz),equations(2.i1)lead 
to the following symmetry of the spectrum: 

E(Q,k,) = -kz) = -E(-Q,  - k z ) .  (2.12) 
In the most symmetric o vortex the symmetries P and TU, are conserved separately (&(e, -kz)  = 03&(Q. kJu3 and &(Q, kz) = 03r3A*(Q, k,)s,03 correspondingly); 

however, this does not produce an additional symmetry of the spectrum, since the TU, 
symmetry operation does not transform k,  and Q: TU, E(Q,  k,) = E(Q,  kz) .  In the w 
vortex the TU, symmetry exists while the P and PTU, symmetries are broken. This 
difference in symmetry results in a different behaviour of the quasiparticle spectrum in 
v and w vortices; zero modes always exist in the w vortex but there should be a special 
condition for the existence of zero modes in the v vortex. 

Let us make the following substitution for the wavefunction U to make the matrix 
F? Hermitian: 

u(r) = ( l / f i ) r i ( r )  (2.13) 
Then thecorresponding Hamiltonian actingon and neglect all the termsof order 

ri is 

k(Q, k, ,  r ,  -id,)  

[ a ( F + Q )  0 

m - l  1 
0 a(?+ Q )  - ~ b o ( Q  - 4) -&+(e) 

- - 
1 

b - ( -Q)  - z b 0 ( - Q + 4 )  -a 

m - 1  \ 

- a ( F - Q  I 
.14) 

a( l )  = ! t [ - (J r ) ’  + ( r 2  - $) / r2  + ki  - k;]  (2. E a )  

b , ( L k d / A ~  = -(i/2)[(Cp+ + c,-P, + a,(c,+ + Cp-)l 
+ i(L/r)(C#+ - cp-)  + V ~ / Z C , ~ ~ , .  

3. Semiclassical approach to zero-mode problem 

(2.156) 

It is impossible to find analytically the exact quantum mechanical spectrum E,(Q, k,) of 
the Hamiltonian (2.14). However, to investigate the possibility of the existence of 
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fermioniczero modes, i.e. branches of the spectrum E.(Q, k, )  which intersect the zero 
energy at some k, = k!, it is not necessary to solve the eigenvalue problem. This can be 
done using the semiclassical approximation which is good since the wavelength k,' of 
excitationsismuch less than thecharacteristicscaleofthe potential created by thevortex 
which is of order of coherence length E = +/AB. In this limit the radial momentum 
operator may be substituted by its classical value 

-ia, + k , .  (3.1) 
In this case the Hamiltonian k ( Q .  k,. r. -iar) transforms to the matrix H(Q, k, ,  r, k,) ,  

As will be seen further, the zero modes take place with large Q 9 1. In this limit the 
semiclassical matrix operator H has the following form: 

(3.2) 

(3.3) 
(3.4) 

I i -(l/ t /Z)b$ -br 0 - E  

E 0 h- - ( l /%5)bu 

0 E -(l/%/Z)bu -b+ 

b! - ( l / d ) b ;  - E  0 
WQ, k , ,  r, k , )  = 

where 

c = i (k? ,  + QZ/r' + k: - k:)  

b,/AB = Cp+(r)k . ,  + Cp-(r )k-  + *Cpu(rW2 

and k t  = k ,  ? iQ/r. 

excitations in the non-uniform order parameter field of the vortex, i.e. 
This matrix may be obtained from the pure classical Bogoliubov matrix for the 

E(k) 
H ( k ,  r )  = 

t A i ( r ,  k )  -&(k)  (3 .5 )  

ifoneintroducestwoconstraintsonthefivevariablesk,r = ( x ,  y )  (or(r, p)incylindrical 
coordinate system) which correspond to the quantization of the azimuthal motion: the 
p component of the momentum k = ( k z ,  k,. k,) is k, = Q/rand the p component of the 
coordinate is p = 0. We begin first with the properties of the classical spectrum E ( k ,  r )  
of the matrix H(k,  r ) .  

4. Disbolical points in classical and semiclassical spectrum 

The important property of the eigenvalues E(k,  r )  of the classical matrix in equation 
(3.5). i.e. of the classicalspectrumof the quasiparticlesin the vortex core, is theexistence 
of zeros in the spectrum [7]; for each point r = ( x , y )  inside some radius rcorc near 
the vortex axis there exist several points in momentum space k = ku(r) at which the 
quasiparticle haszeroenergy, i.e. E(k'(r), r )  = 0.Thesepointsin momentumspace (so- 
called 'boojums on the Fermi surface') are diabolical points, i.e. exclusive points of 
intersection of different branches of spectrum. Here the quasiparticle branch E(k ,  r )  of 
the quasiclassical spectrum touches the quasihole branch -E(k ,  r )  of spectrum and 
therefore the classical spectrum E ( k .  r)  touches the zero energy level. One may expect 
that the quantum numbers Q and k ,  in exact quantum mechanical spectrum E(Q, k,) 
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should be close to the corresponding classical values near diabolical point to obtain zero 
inexactspectrum E(Q,  k J .  

The diabolical point has topological characteristics due to which it is stable and does 
not disappear under perturbations. The topological invariant describing the point k'(r) 
may be written in terms of the classical Green function [lo] 

G = (iw - H)-' (4.1) 

as the integral over three-dimensional surface U around point w = 0, k = P(r )  in four- 
dimensional (k, @)-space: 

1 
N o  = -e'J'"Tr 24n2 dS, Ga,G-lGakG-lGa,G-l .  (4.2) 

This is an integer-valued invariant which equals + 1 or - 1 for diabolical points inside 
the vortex core. 

Let us consider the positions of the diabolical points on the simple example of the 
)He-B v vortex which consists of the B phase outside the core and the A phase inside 
the core; all the amplitudes C,,, are zero with the exception of the B-phase amplitudes 
and the A-phase amplitude concentrated in the core of large radius R: 

C+- = C-+ = C, = B(r ) /AB CO+ = X h A ( r ) j A B  (4.3) 

with B(r ) /A ,  + r / R  at r 4 R and B(r B R )  = AB,  A(0) = A, and A ( r  B R )  = 0, and 
R B E .  - 

The positions of zeros of the classical energy spectrum E(k, r) for this simple vortex 

k' ( r ,  q) = 2 cos P(r)  + sin P(r )  [F cos a ( r )  + @ sin m(r)] (4.4) 

is given here by equations 

tanZ p(r)  = tan2 m(r) = B2(r),'[Az(r) - B*(r ) ] .  (4.5) 

Now we can proceed to the semiclassicalspectrum E(Q,  k,, k,. r) of the semiclassical 
matrix in equation (3.2). The Hamiltonian in equation (3.5) and that in equation (3.2) 
depend on a different number of variables: five variables (k, r) in equation (3.5) while 
the number of variables in equation (3.2) is reduced to k,,  k,, rowing to the quantization 
of the azimuthal motion in terms of Q, which eliminated the variables q and kq. Before 
the quantization had been done the manifold of zeros of the classical Hamiltonian (3.5) 
forms two-dimensional subspace in the five-dimensional (k, x,-y)-space, since for each 
rinside the core one has point zeros in momentum k-space. Now, when the axial degree 
of freedom is quantized in terms of Q eliminating the two variables Q, and k,, this 
manifold of zeros reduces to points k p ,  kso), r(O) in the three-dimensional (kz ,  k,, r)-  
space of the semiclassical spectrum E(Q, k,, k,, r) .  These points are also the diabolical 
points, now in mixed momentum and coordinate space. 
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For given Q the points k$@, k!", r(O) may be found from equations (4.4) and (4.5) if 
one takes into account that 

tan a =  k, l k ,  = Q/rk, 

1 Q Q Q kFR 

tan2 @ = (k: + Q'/r ' ) /k$ (4.6) 

(4.7) 

In the range of quantum numbers Q where 

equations (4.5) and (4.6) have two solutions; for positive and negative k,, they are 
related by symmetry relations. For positive k,, one has 

r(') = R(Q/kFR) V3 GR ki0) = kF(r(") /R) k, 

k r )  = kF(r(o)/R)2 

This point is described by the same topological invariant (4.2) but the integration takes 
place in the four-dimensional ( w .  k,, k,, r)-space. 

(4.8) k$O) G lk$')l = k,  k$" = k,[l - 1(Q/kFR)'13]. 

5. Diabolical points and spectral asymmetry index 

It is important that the diabolical points of both Hamiltonians in equations (3.2) and 
(3.5) take place exactly at zero energy level. Therefore the diabolical point of the 
quasiclassical spectrum is simultaneously the zero in the spectrum. This follows from 
the additional symmetry of the quasiclassical Hamiltonians (3.2) and (3.5): 

H* = - s , n r ,  (5.1) 
which implies that, if E(k, r) is the eigenvalue of this matrix, then - € ( k ,  r )  is also the 
eigenvalue. Therefore, if the spectrum E(k,  r) of the Hamiltonian (3.5) or the spectrum 
E(k,, k,, r)ofthe Hamiltonian(3.2) toucheszero, it means that the positiveandnegative 
branches of spectrum touch each other and one has the diabolical point of the spectrum, 
an exclusive point of intersection of the branches of the quasiparticle spectrum. 

Thissymmetry is, however, approximate for the semiclassical Hamiltonian and takes 
place only in the limit of large Q where the semiclassical Hamiltonian transforms to the 
classical Hamiltonian. Let us now introduce terms of the relative order of l /Q  which 
were neglected in equation (3.2). Asfollowsfrom the exact Hamiltonian (2.14) the main 
term of this type is 

(1 + 03)Q/2rZ.  (5.2) 
This term gives the non-zero trace of the Bogoliubov matrix, i.e. 

Tr H = 2Q/r2 

and violates the symmetry in equation (5.1). As a result it moves the diabolical point of 
the intersectionof the branchesof thesemiclassicalspectrum from thezeroenergy level, 
i.e. the branches of the semiclassical quasiparticle spectrum E(k,, k,, r )  now cross each 
other at finite energy of the order of Q/r& This means that the lower branch (the branch 
below the diabolical point) may cross the zero level on the whole two-dimensional 
surface in the three-dimensional (k2, k,, r)-space. 

Now we show that the existence of zero modes in the exact quantum mechanical 
spectrum €(e, k,) depends on the topology and size of this two-dimensional surface. 
Let us suppose that the lower branch of the E(k,, k,, r )  spectrum below the diabolical 
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point with positive k, intersects zero level and all the two-dimensional surface of zeros 
lies in the half-space k, > 0 in the region 0 < k,, < k, < kz2. This surface is compact and 
is characterized by the same topological invariant as the diabolical point, where the 
integral now is around the surface oembracing the surface of zeros in four-dimensional 
(U, k,, k,, r)-space: 

Here G is the Green function of the semiclassical Hamiltonian: 

G ( Q , w k z , k r , r ) =  [iw -WQ,kz ,k , , r ) l - ' .  (5.4) 
Now one may show that, in this case, at least one branch of the exact spectrum 

E(Q, k,) crosses zero at some kZo inside the segment kZl < k,, < kz2. To prove this let us 
introduce the spectral asymmetryindexN(k,) (see, e.g., [5] )  which may be expressedin 
terms of the Green function of the exact Hamiltonian (2.14): 

6 = (iw -&)-I (5.5) 

WQ, k,) = Tr (I2 6) = -Ti/$ A + fi2 = -$ sgn En(Q, kz). (5.6) 

Here Tr means the summation over all the states with given Q and k,. This integer- 
valued index shows the difference between the numbers of the positive and negative 
eigenvalues &,(e, kz) of fi at a given Q and momentum k,, if the index N(k,) changes 
abruptly at some k,, this means that at this k, one of the energy levels &(e, k,) crosses 
zero energy. 

Since the core size is of the order of the coherence length E = v F / h  and therefore is 
much larger than the wavelength k,' of the excitations, one may use the gradient 
expansion for the Green function 6 (see, e.g., [ll]) and express G in terms of the 
semiclassical Green function in equation (5.4): 

G(u, Q. k,, +a,, r) = G(w, Q. k , ,  k,. r) 

+ (i/2)G(Jk,G-'Ga,G-'C - J,G-'GJk,G-'G) +.  . .. (5.7) 

Now substituting equation (5.7) into equation (5.6) and using the equations 
3,G-I = i and 

Tr=I - t r  dk, dr  
2n 

where tr means trace only for matrix indices, one has the following expression for 
spectral asymmetry index: 

N(Q,  k,) = 24x tr (1 d3x GaiG- 'GakC- 'GJ,G- '  1 (5.8) 

where (xlrx2,x3) = (U,  r, k,). This equation is well defined only if the Green function 
has no singularities, i.e. if the region of integration does not contain the zeros in the 
semiclassical spectrum E(Q,  k,, kr, r). 

Equation (5.8) allows us to relate the number of zero modes with the topological 
charge N in equation (5.3). Let us consider the difference of asymmetry indices at 
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different points k, on both sides of the region of zeros in the semiclassical spectrum 
where the index iswell defined: 

N(Q. k ,  > k:?) - N(Q, k, < kzl). 

On the one hand the difference between the two integrals coincides with the integral N 
in equation (5.4) around the manifold of zeros in the semiclassical spectrum; on the 
other hand this difference is just the number of branches of exact spectrum Ea(Q, k,) 
which cross zero energy level. Therefore, since N = il, then at least one zero mode 
exists in the spectrum. 

The number of zero modes in principle may be larger since Ngives the algebraic sum 
of zero modes: it does not count the branches which twice intersect the zero level. One 
can also estimate the total number of the zero modes in the exact quasiparticle spectrum 
E,(Q, k,) using the Bohr quantization rule. At given k ,  the manifold of zeros in the 
semiclassical spectrum is the closed line in the two-dimensional (k,, r) phase space at 
which the quasiclassical energy is zero. One must estimate the area 

f k ,  dr  

inside this curve and compare with the elementary quantum 2xh; their ratio gives the 
numberofthe positive energy levelsof thelower branchand thereforeshows thespectral 
asymmetry 

for arbitrary ki even inside the segment k,, c k, < kZz. If the area in equation (5.9) is 
large. the N(Q. k,) may be calculated in the quasiclassical approximation, where the 
integer-valuedness of this index is restored owing to Bohr quantization rule. In this case 
sincethespectralasymmetryisabsentat k, > k,,theN(Q, kJshowshowmanybranches 
E,(Q, k,) of the exact quasiparticle spectrum crossed zero level inside the segment 
(kv k d  

6. Zero modes in the simple model of the vortex 

Now let us apply this to the simple model (4.3) of the v vortex which qualitatively 
represents therealvvortex in thesuperRuidZHe-B. The Bogoliubovsemiclassicalmatrix 
for the semiclassical spectrum E(Q, k,. r, k,) of fermions i n  this vortex including the 
centrifugal term (1 + 03)Q/2r' is 

H(Q, k,, r,k,) = g(Q, k, , r ,  k,) + (1 + u3)Q/2r2 

H(Q, k,, r, k,) 

-A(r)k+ - B(r)k, 0 B(r)k t 
E -A(r)k+ - B(r)k, -B(r)k- 

-A(r)k- - B(r)k, - E  0 
._ ._ 

[-A(r)k- - B(r)kz -B(r)kt 0 --E 

(6.1 
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where k, = k, rt iQ/r. The manifold of zeros of the eigenvalues E(Q, k,, r, k,) of this 
matrix is obtained as zeros of the determinant of the matrix 

det H = [ E ~  + (Ed-  - AQ/r)' + (Ak, + Bkz)2j  

x [e2 + ( B u k :  + Q2/r' - AQ/r)' + (Ak, .t Bk,)2] 

- ( F *  + BZk:)Q2/r4. (6.2) 

This determinant is positive at k, > kF for all k, and rand therefore has no zeros at large 
k,. Zeros appear at lower k,. According to equations (4.6) and (4.7) for Q + k,R there 
is a point k:'", k$'l, r(O) at which 

E =Ak,  + Bk, = B u m -  AQ/r = 0 

which means that the determinant is negative at this point and therefore there are zeros 
in the semiclassical quasiparticle spectrum E(Q, k,, r, k,) at k, = k$"l. Then it may be 
shown that at k, = 0 the determinant is again always positive if Q 9 kFc. The same 
situation takes place for the negative k:. Therefore in the range of Q where 

kFE Q kFR (6.3) 
themanifoldofzerosin the semiclassicalspectrum E ( Q ,  k,, r ,  k,)consistsoftwoisolated 
compact manifolds: one is concentrated in the positive half-space k, > 0 and the other 
in the negative half-space. Both manifolds arise from the diabolical points and therefore 
have non-zero topological invariants N = k 1. 

According to section 5 this means that there exist at least two branches E,(Q, k,) for 
each azimuthal quantum number Q in the range (6 .3) .  which intersect zeroenergy level; 
one branch intersects zero at positive k, while the other intersects zero at negative k,. 
To have the corresponding Q-values the core radius R should essentially exceed the 
coherence length 5'. This is believed to be the case for the 'He-B vortices (see [7]). The 
total number of zero modes is of order kFR - E ~ / A ~ .  

7. Discussion 

As distinct from the traditional singular vortices the vortex with a dissolved singularity 
may have the gapless fermionic excitations. As distinct from the fermions on strings in 
elementary-particle theories, the number of the fermionic zero modes (number of 
'families' of massless chiral fermions) on the vortices in the, pair-correlated systems is 
not defined by the winding number of the vortex but is of order of kFR, where R is the 
width of the dissolved singularity on the axis, i.e. the size of the region inside the vortex 
core where the diabolical points of the fermionic quasiclassical spectrum E(k ,  r)  are 
concentrated. 

The fermionic excitations on the vortices are characterized by the integer azimuthal 
quantum number Q resulting from the continuous Q-symmetry of the axisymmetric 
vortex. While for the vortices with w symmetry the fermionic zero modes always exist, 
we found here that for the v vortices the zero modes exist only fork& < Q < kFR which 
means that the core radius should exceed the coherence length for existence of zero 
modes. 

The number of 'families' of gapless fermions is an additional characteristic of the 
vortices of given winding number and of given symmetry class. The transition between 
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vorticesof thesame topology andsymmetry class but withdifferent numbersoffermionic 
zeromodesistheanalogueofthe Lifshitz [I21 transitionofthe21orderat T =  Oatwhich 
the topo1ogyoftheFermisurfacechanges;in thesystemoftheone-dimensionalfermions 
localized on the vortices, the zero-dimensional Fermi 'surface' appears or disappears. 
Thus we have the following hierarchy of characteristics of the vortices or other topo- 
logical objects: topological chargesof the vortex --t symmetry of the vortex + topology 
of the Fermi surface of the gapless excitations inside the vortex core. 

At temperatures well below A*/&,, instability of the one-dimensional Fermi system 
of localized Bogoliubov excitations towards either Cooper pairing or formation of the 
spin-density wave should develop. The type of instability depends on the sign of the 
coupling constant between the one-dimensional fermions and may be different for 
different families of fermions. As a result the additional breaking of symmetry in the 
vortex core is expected at low temperatures giving rise to such phenomena as periodic 
modulation of the order parameter along the vortex axis, spiral texture, s-wave super- 
fluidity or other superfluidity classes. 

Note that the Raring out of the singularities from the vortex axis into higher dimen- 
sions, which gives rise to the fermioniczero modes on vortices, occurs not only in systems 
with a multicomponent order parameter such as superfluid 3He and possibly heavy- 
fermion superconductors. Singularities are also dissolved inside the vortices in con- 
ventional superconductors: in a docbly quantized Abrikosov vortex [SI and even in 
singly quantized vortices where the non-singular four-particle-correlated states appear 
on the vortex axis [13]. Therefore the fermionic zero modes may exist even in con- 
ventional superconductors, especially if the vortex core structure becomes complicated 
owing to crystal-field anisotropy. The number of branches of gapless fermions in this 
case should vary from 0 to +/A 9 1. It is possible that new experiments with a scanning 
tunnelling microscope [3] could reveal this fine structure of the Abrikosov vortices in 
superconductors. 
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